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LIQUID CRYSTALS, 1986, VOL. I ,  No. 2 ,  155-167 

Dispersion and attenuation of the eigenwaves for light propagation in 
helicoidal liquid crystals 

by IBRAHIM ABDULHALIM, RAOUL WEIL and LUCIEN BENGUIGUI 
Solid State Institute and Department of Physics, Technion-Israel Institute of 

Technology, 32000, Haifa, Israel 

(Received 29 October 1985; accepted 3 January 1986) 

The dispersion curves and attenuation factors of the Bloch eigenwaves in 
helicoidal liquid crystals (chiral smectic C and cholesterics) are calculated using the 
4 x 4 characteristic matrix method. Four possible types of eigenmodes are seen 
to exist in the medium. The reflection peaks, which correspond to odd parts of the 
full pitch, are total reflection peaks, while those corresponding to even parts of the 
full pitch are composed of three branches at high incidence angles, where the outer 
branches are selective reflection and the central one is a total reflection peak. 
Selective reflection regions occur only at the edges of the Brillouin zones, while 
total reflections can occur anywhere inside the zones. The former are interpreted 
according to the coupled mode theory as resonant Bragg reflections, with the latter 
as exchange Bragg reflections. When the tilt direction exceeds the propagation 
direction, the central branch of the even sequence of peaks starts to be due to 
resonant Bragg reflections. The first order peak for cholesterics becomes strongly 
structured at large incidence angles. 

1. Introduction 
Bloch eigenwaves are the result of the spatial periodicity of the medium. They have 

the form of plane waves modulated by a function periodic with the structure. When 
these waves approach the Brillouin zones’ edges, they exhibit reflection toward the 
adjacent boundary of the Brillouin zone, resulting in an energy gap for the case of 
electrons in a periodic potential, a stop band for the case of electrical networks and 
a reflection peak for the case of electromagnetic wave propagation [I ,  21. For the latter 
case, the helicoidal (chiral smectic C(S,*) and cholesteric) liquid-crystalline phases 
represent a good example for studying light propagation in anisotropic periodic 
structures. In contrast to the cholesteric case, which has been studied extensively 
[3-lo], only a few investigations have been made [1&18] for the S,* case. A review of 
the optical properties of cholesterics has been given by Belyakov and Dimitrienko 
[19]; it also includes a section on the optical properties of the Sg case using the 
two-wave approximation of the dynamical theory. 

The first study of the eigenmodes for light propagation along the helical axis of 
cholesterics was given by Nityananda [3,4]. The two eigenmodes are nearly circularly 
polarized, where one of them having the same helicity as the medium is reflected from 
the second Brillouin zone boundary, and the other mode is transmitted without any 
attenuation. 

The properties of the normal waves at oblique incidence has been discussed by 
Dreher and Meier [5 ] ,  by evaluating the characteristic exponents of the solutions of 
the fourth order differential equation. Their charts of stability show the existence of 
an infinite series of reflection bands, where each band is split into two branches. More 
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156 I. Abdulhalim et al. 

recently Saupe and Meier 161 extended this study and found the existence of a triplet 
of branches. The two outer bands of each triplet give selective reflection of polarized 
light, while the centre band is unpolarized. The first order reflection peak shows a 
complicated structure at high incidence angles. The discrepancy with the previous 
work was attributed to the neglect of one type of the possible eigenmodes. Later, 
Oldano et al. [7] have simplified the infinite determinant of Dreher and Meier [5] to 
a more analytic form representing the dispersion equation for light propagation in 
cholesterics. Elachi and Yeh [8] have investigated the problem by finding numerical 
solutions to the Maxwell equations, in analogy to the solution of the Schrodinger 
equation for an electron in a periodic potential. Their Brillouin diagram shows that 
by an appropriate choice of the dielectric constant of the outer isotropic medium and 
of the angle of incidence, the reflection band may split into two or three bands. 

The 4 x 4 matrix method is a relatively simple, clear and exact method. Shtrickman 
and Tur [9] first applied it for the computation of the eigenmodes, for the normal 
incidence case of cholesterics deformed by a magnetic field applied in a direction 
perpendicular to the helix. More recently Sugita et al. [lo] applied this method to the 
general case of cholesterics. Their calculations show the existence of four possible 
eigenmodes in the medium, where two represent the modes generated at  the boundary 
and the others those reflected from the second boundary. The types of reflection from 
the cholesteric texture were studied on the basis of a plot of the real and imaginary 
parts of the wavevectors of the two generated modes at the boundary as a function 
of the reduced wavelength.. 

Our present study is devoted mainly to the more general case of the chiral smectic 
C phase. The cholesteric case is taken as a special case, when the tilt angle equals 4 2 .  
The results are given in graphical form as a function of the tilt and incidence angles 
for two different values of the outer dielectric constant. Furthermore we give an 
interpretation to our results according to the coupled mode theory [ I  1-13]. 

2. Formulation 
The 4 x 4 matrix formulation for light propagation in helicoidal liquid crystals 

is given by [I41 

E ,  

where t+h = (- 2 1 and the 4 x 4 matrix A are given in [ I  51. It has the periodicity 

p of the structure 

A(z + p )  = A(z). ( 2 )  

According to the Bloch-Floquet [ l ,  21 theorem, the solutions to equations (1) and (2) 
have the form of a plane wave modulated by a function periodic with the structure 

$(z)  = u(z) exp (ikz), 
where 

(3) 

u(z + p )  = u(z). (4) 
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Light propagation in helicoidal liquid crystals 157 

Then 

We define the lattice translation operator 0, as 

0 ,z  = z + p, (6 )  

Ot$(Z) = $(O;Iz) = $(z - P). (7) 

0, ( 4  $ ( 4  = exp ( - ikP) $(4; (8) 

applying 0, on $(z), we obtain 

Using equation (3) we find 

that is exp (- ikp) are the eigenvalues of the lattice translation operator, and $(z) are 
its eigenvectors. On the other hand, the characteristic matrix for one period M(p) is 
defined by [ 151 

$(z )  = M(P)$(Z + PI. (9) 

M(P)$(Z) = exP(- ikP)$(Z). (10) 

Using equation (5) we find 

Then exp (- ikp) are also the eigenvalues of the characteristic matrix for one period, 
and $(z) its eigenvectors. The wavevectors k are determined by the secular equation 

I W p )  - exp(-ikp)l,l = 0, (1 1) 

where Z4 is the 4 x 4 unit matrix. This equation gives four values for the wavevector 
k.  Every value of k brings a solution having the form of equation (3) to equation (1 1). 
These four solutions are the eigenmodes of the system. Physically, two of them 
represent the two eigenwaves generated at the first boundary, and the other two 
represent those reflected from the second boundary. 

The calculation of M(p) was described by us [I51 recently, using the spiralling 
dielectric ellipsoid model. Every period of the structure was assumed to consist of 500 
molecular layers. The one layer characteristic matrix was calculated using the 
Lagrange-Sylvester interpolation polynomial. The evaluation of the eigenvalues of 
M( p) is performed numerically. We are interested in the two eigenmodes generated 
on the boundary, which have positive imaginary parts of their wavevectors if they are 
complex, and those which are positive, if they are purely real. Since our calculations 
were performed as a function of the reduced wavelength, then the graphs present the 
real and imaginary parts of (kp), not those of k. The real part of (kp) as a function 
of the reduced wavelength is actually the dispersion curve for that eigenwave. The 
imaginary part of (kp) represents how much the eigenwave is attenuated in passing 
through one period, we call it simply the attenuation factor. However, since we have 
not supposed any dissipation mechanism, the attenuation is due to reflection. 

3. Results and discussion 
Typical values for the principal dielectric constants were taken [15] = E~ = 2.0, 

E~ = 3.0. The dielectric constant of the outer dielectric semi-infinite media is = 2.3 
in the first case, and for comparison purposes we also take = 1.0. The number of 
periods inside the sample is chosen N = 10, and each period is divided into Z = 500 
layers. 
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158 I. Abdulhalim et al. 

3.1. ClasslJication of the eigenwaves 
Let us write k = k ,  + ik i ,  where k,  and ki are the real and imaginary parts of the 

wavevectors respectively. Since we are interested in the two modes generated on the 
z = 0 boundary, we have to choose the two modes out of four, which have positive 
k ,  if they are purely real, and positive ki if they are complex. According to this choice, 
four possible types of modes are seen to exist: 

( I )  the two modes are with ki = 0,  but k ,  > 0; 
( 2 )  one mode is with ki = 0, but k, > 0, and the other with k, > 0 and k, = 0; 
(3) the two modes are with ki > 0 and k ,  = 0. 
(4) the two modes are with ki > 0 and k,, = - k,, # 0. 

Type ( 1 )  represents two waves propagating without any attenuation. Type ( 2 )  
represents one reflected eigenwave and the other, a propagating mode without any 
attenuation. This latter type brings the selective reflection. Type (3) represents two 
reflected waves, therefore it brings the total reflection. In this latter case, every wave 
is reflected independently of its polarization state. Type (4) brings also totally reflected 
waves, but it differs from the usual Bragg reflection (see 94). 

According to equation (3), every mode is periodic with k , ,  and in order to know 
its properties, it is usual to investigate it in the interval of one period only. The period 
is q, = (2n/p) because 

exp(ikp) = exp i k,  + - p . ( (  3) 
The interval chosen originally by Brillouin was between - n/p  and + n/p ,  i.e. - n < 
k,p < n. This is the first Brillouin zone known from solid state physics. Every 
wavevector outside this region could be translated to it by the reciprocal lattice vector 
translation G = nq,, where n is an integer. Our results are represented in this reduced 
zone scheme. 

3.2. Incidence angle dependence 
In figures 1 and 2 we show the dependence of the attenuation factors on the 

incidence angle for the two cases E, = 2.3 and E~ = 1.0, respectively. Actually, there 
is no difference between the two cases, because the important parameter is the 
quantity ,/E, sin 4 which defines the propagation direction of light inside the medium. 
In every section of the figures the corresponding dispersion curves for the two 
eigenwaves can also be seen. 

The heights of the attenuation factors for the case with E, = 1.0 are lower than 
those with E, = 2.3 (figures 1 (B) and 2 (C)), in correspondence with the results for the 
reflection peaks calculated in our previous work [ 151. We give the explanation to this 
phenomenon according to the usual Snell’s law of refraction. The propagation 
direction of the wave in the S,* medium is closer to the helix in the case with E ,  = 1.0, 
than that with E, = 2.3, and hence the lower height of the reflection. Other differences 
between these two cases could also be attributed to Snell’s law, including the result 
of Elachi and Yeh [8] concerning the number of branches inside the peak. 

At normal incidence, there exists only one unstable region [3] (figure 2(A)), in 
which one mode is reflected, hence it is a selective reflection peak of type (2). The real 
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Figure 1. Attenuation factors (imaginary parts) and dispersion curves (real parts) of the two 
eigenmodes for the case c0 = 2.3. (A) 8 = (p = 45", (B) B = 45", 4 = 60" and 
(c) e = goo,+ = 600. 

part k, of the reflected wave is located on the Brillouin zone boundary where the 
condition is satisfied 

k,p  = n7c (13) 

and n = 0, f 1, Itr: 2, . . . . The fact that for this case, n = 0 indicates that this 
wavevector is translated by a reciprocal lattice vector from the boundary of another 
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Light propagarion in helicoidal liquid crystals 161 

sequences of peaks; sequence (A) consists of those peaks that correspond to odd parts 
of the full pitch and it contains the first-order peak, known as the full pitch peak; 
sequence (B) consists of those that correspond to even parts of the full pitch and it 
contains the second-order peak known as the half pitch peak. 

For the sequence A peaks, the two modes are reflected (type 4) and the real parts 
of their wavevectors satisfy the condition 

The non-complete equality indicates that this type of reflection is a result of the 
coupling between the modes, when energy is transferred back and forth between them 
through the medium. When this occurs, the instability has not to be at the boundary 
of the Brillouin zone, but everywhere inside it, where the following condition is 
satisfied: 

m = 0 ,  f 1, k 2, . . . . Such a reflection is called the exchange Bragg reflection 
according to the formulation of coupled mode theory [ 131, which we shall discuss in 
the next section. The heights and widths of the attenuation factors for the sequence 
A peaks increase monotonically in a saturation behaviour with increasing angle of 
incidence. There is no splitting after some incidence angle of the first-order peak as 
we reported recently [ 151. This fact indicates that the splitting which we reported was 
a result of the interaction of this peak with the subsidiary oscillations that came from 
the boundaries. 

Sequence B peaks are more structured, and their dependence on the incidence 
angle is more complicated. At small incidence angles the two modes are reflected from 
the centre of the reduced Brillouin zone where one mode is reflected only in a small 
interval in the centre of the gap. By increasing the incidence angle the appearance of 
three distinguished regions of instability can be seen (figures 1, 2, 5) inside the gap, 
where the two outer ones are selective reflections of type (2 )  and the central one is a 
total reflection of type (3) or (4). I t  is of type (3) if the incidence angle is smaller than 
the tilt angle, and of type (4) if it is greater than or equal to the tilt angle. This result 
is not the most general, because for the case with E~ = 1.0 (figure 2) in the whole range 
of incidence angles, the total reflection region is of type (3). For the cholesteric case 
(figure 1) it is of type (4). However, E,, has the effect of changing, the propagation 
direction inside the medium according to Snell's Law, as mentioned previously. With 
E" = 1.0 and 4 as large as possible, one obtains a propagation direction closer to the 
helix axis, than with c0 = 2.3 and 4 = 45". 

According to these results we summarize the phenomenon as follows. In the areas 
of total reflection for the peaks of sequence B, the condition k , ,p  = - k,,p # 0 is 
satisfied. The deviation of (k , , p )  and (kr2p) from zero depends on c0 through the 
dependence of the propagation direction on E ~ .  This deviation becomes clearer when 
the propagation direction exceeds the tilt direction, and for the cholesteric case, the 
half pitch peak is strongly structured at large incidence angles. More generally the 
peaks of total reflection are the result of exchange Bragg reflection and the peaks of 
selective reflection are the result of direct Bragg reflection [ 12, 1 31 where condition (1 3) 
is satisfied. 
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162 I. Abdulhalim et al. 

I 

3 .3 .  Tilt angle dependence 
In figures 3 , 4  and 5 ,  the dependence of the attenuation and the dispersion curves 

on the tilt angle is shown. For the peaks of sequence A the existence of the turning point 
tilt angle is observed. This angle was mentioned by us recently [I51 as the angle where 
the peaks height and width of the sequence A of peaks start decreasing. A similar tilt 
angle was reported recently by Oldano [ 161, where quasi-degeneration occurs and the 
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Figure 3. The tilt angle dependence of the attenuation factors and dispersion curves for the 
case E,, = 2.3 and fixed incidence angle 4 = 45": (A) 0 = IY, (B) 0 = 30", (C)  H = 60" 
and (D) 8 = 85". 
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Figure 4. The tilt angle dependence of the attenuation factors and dispersion curves for the 
case E" = 1.0 and fixed incidence angle 4 = 45": (A) 0 = 15", (B) 0 = 30", (C)  0 = 60" 
and (D) 0 = 85". 

polarization states of the eigenfunctions are reversed when passing through such a tilt 
angle. The quasi-degeneration is also seen in our figures and it occurs near the same 
tilt angle reported by Oldano (about 56"). However, the quasi-degeneration occurs far 
from the reflection peaks, while the turning point tilt angle (which is about 51') is a 
characteristic of the reflection peak itself. The two critical angles are different, but it 
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Figure 5 .  The tilt angle dependence of the attenuation factors and dispersion curves for the 
case E,, = 2.3 and fixed incidence angle 4 = 35", (A) 0 = 30", (B) 0 = 45", (C)  0 = 60" 
and (D) 0 = 85". In (D) a mistake has been discovered after the completion of the 
manuscript. The curves of Im(kp) have t o  be shifted to the left, so that the peaks of 
Im (kp)  and Re (kp )  coincide with each other. 

is not obvious to us, how to connect them. A more detailed study of this subject will 
appear in a forthcoming paper. 

The positions of the peaks of sequence A moves toward the long wavelength 
region with increasing tilt angle. Sequence B of peaks shows a similar behaviour to 
that mentioned in the previous section. When the tilt direction is smaller than the 
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propagation direction the half pitch peak is composed of a triplet of bands, where the 
outer ones are selective reflection bands and the central one is a total reflection band 
where the modes are of type (4). The deviation of the wavevectors from zero is clearer 
when the tilt angle is less than the incidence angle; when it is larger, the condition 
k r l p  = k,,p = 0 is satisfied. The phenomenon is obvious also for the case with 
E~ = 1.0 (figure 4). 

When the tilt angle is larger than the incidence angle, the structure of the half pitch 
peak starts to become complicated. For the case with E~ = 2.3 and 4 = 35" 
(figure 5 ) ,  the total reflection region becomes narrower with increasing 9. When 
4 = 45" the width for 9 = 60" is less than that for 0 = 85" (cf. figure 3(C)). 

For the case E~ = 1.0, the total reflection region widens with increasing 8. All the 
peaks become nearly a total reflection region with k r l p  = k,,p = 0, and suddenly 
when 0 = 85", k r l p  = - k,,p # 0 at one-half of the instability region, and the other 
half is divided into two regions, one with k,, = kr2 = 0, and the other is a selective 
reflection region. 

4. Coupled mode theory interpretation 
The coupled mode theory was formulated originally by Kogelnik [I 11 for thick 

holograms, and extended by Yariv [12] and Yeh [13] for different cases in optics, 
including electromagnetic wave propagation in anisotropic media. For the case of a 
periodic anisotropic medium, the dielectric tensor is written as [ 12,131 

E = q, + BE, (16) 
where go is the tensor of the unperturbed medium, and A& is the periodic perturbation. 
The electromagnetic field in the perturbed medium is written as a superposition of 
four terms, representing the four possible eigenmodes. The four modes could be 
divided into two sets: two slow modes and two fast modes. Every set represents one 
forward mode and one backward mode. According to this classification, the four 
modes are 

(i) slow forward mode (sf), with complex amplitude A(z); 
(ii) slow backward mode (sb) with complex amplitude B(z); 
(iii) fast forward mode (ff) with complex amplitude C(z); 
(iv) fast backward mode (fb) with complex amplitude D(z) .  

The wave form in the medium is the superposition of these four modes. In substituting 
it into the wave equation we obtain the following results. 

(1) Direct Bragg reflection 

modes, the following coupled equations are easily obtained: 
When k,p = nn, where n = 0, 1, .t 2,. . . , and k ,  is the wavevector of the slow 

dA dB 
dz - k,,B and - dz = k,*,A; - _  (17) 

k,, is the coupling constant between the two slow modes. The solution to equation (1 7) 
gives that energy is transferred from the slow forward mode (sf) to the slow backward 
mode (sb). The result is that the incident wave is completely reflected if the interaction 
region is long enough. Similar equations are obtained for the two fast modes (ff) and 
(fb) when the condition k,p = Ix is satisfied, where k ,  is the wavevector of the fast 
modes and 1 = 0, 1, If: 2,. . . . Such reflections are called the direct or resonant 
Bragg reflections, and occur only on the Brillouin zone boundaries. 
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166 I. Abdulhalim et al. 

(2)  Exchange Bragg rejection 
When the condition k,p + k,p = 2m1r is satisfied, where m = 0, k 1 ,  _+ 2 , .  . . , 

then the coupling is between the (sf) and (a) modes or between (sb) and (ff) modes. 
Physically, energy of one fast (slow) mode is converted to energy of one slow (fast) 
mode. The result is that the two modes are reflected. This type of reflection is called 
an exchange Bragg reflection and it could happen anywhere inside the Brillouin zone 
when this condition is satisfied. 

The interesting result from the coupled mode theory is that the coupling constant 
for the case of direct Bragg reflection depends only on the diagonal elements of the 
As matrix, while the exchange coupling constant depends only on the off-diagonal 
elements of the matrix. However, this result has been proved [13,19] for a special form 
of the dielectric tensor. We use it here because it offers a physical explanation of our 
results. 

For the case of the S z  medium, the dielectric tensor could be expanded in a Fourier 
series 

where 

and sn = 0 for In1 > 2. Here E l ,  E ~ ,  t3  are the principal dielectric constants of E and 
= E ! ,  E~~ = E ~ C O S ’ ~  + E~ sin2@ and E~~ = -(c3 - E2)sin6cos6. If we take the 

zero term c0 as the unperturbed part of the dielectric tensor, and the perturbation is 
sk2 for the peaks of sequence B and for those of sequence A, then we obtain the 
following results: the tensor E+* contains diagonal and off-diagonal elements, so that 
the peaks of sequence B couldbe a result of the two types of reflection: the direct and 
the exchange, in correspondence to what we get for this sequence of peaks. On the 
other hand, the tensor contains only off-diagonal elements, so that the peaks of 
sequence A result only from exchange Bragg reflection as we mentioned in 93. For the 
cholesteric case, however, the term s& I does not exist, and so the peaks of sequence 
A also do not exist either. 

5. Conclusions 
In this work we have presented results of calculations of the dispersion and 

attenuation of the Bloch eigenwaves that exist in S,* and cholesteric media. The 
computations were based on the 4 x 4 characteristic matrix method, where the 
wavevectors are obtained by diagonalizing the one period characteristic matrix, and 
hence four possible types of eigenmodes exist in the medium. 
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The sequence of the reflection peaks which correspond to odd parts of the full 
pitch, are total reflections and interpreted according to the coupled mode theory as 
exchange Bragg reflections where coupling between the fast and slow modes occur. 
The reflection peaks which correspond to even parts of the full pitch are composed 
of three branches at  high incidence angles, where the outer branches are selective 
reflections and the central branch is a total reflection peak. This composition of the 
latter sequence of peaks is interpreted according to the coupled mode theory as a 
result of the existence of both diagonal and off-diagonal elements in the matrix of the 
second order Fourier coefficient of the dielectric tensor. The diagonal elements give 
the selective reflection where the Bragg condition k , ,p  = nn is satisfied and hence they 
are called direct Bragg reflection, where they occur only on the Brillouin zone 
boundary. The off-diagonal elements give the total reflection peaks where the con- 
dition k, ,p  + k,p = rnn is satisfied and hence they are called exchange Bragg reflec- 
tions, where they can occur anywhere inside the Brillouin zone. 

The dependence of the curves on the tilt and incident angles was evaluated for two 
different values of the outer dielectric constant. When the tilt angle exceeds the 
propagation angle with respect to the helix axis, the central branch of the even 
sequence of peaks starts to be due to resonant Bragg reflections. The odd sequence 
of peaks does not exist in the cholesteric case, because the first order Fourier coef- 
ficient of the dielectric tensor vanishes. In this case the first peak of the even sequence 
becomes strongly structured at high incidence angles. 
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